命令: | 统计 荟萃分析 几率 |
描述
有关MedCalc中的荟萃分析的简短概述,请参见“荟萃分析:简介”。
MedCalc使用Mantel-Haenszel方法(Mantel&Haenszel,1959)在固定效应模型下计算加权合并赔率比。接下来,在随机效应模型下(DerSimonian&Laird,1986),采用异质性统计量来计算汇总比值比。
如何输入数据
可以在电子表格中按以下方式输入不同研究的数据:
在这个例子中,在第一项研究中,有73例接受了活性物质治疗,其中15例有阳性结果。23例患者接受了安慰剂,其中3例阳性。在电子表格的下一行中,遵循其他4个研究的数据。
必填项
然后可以如下完成“元分析:优势比”对话框:
研究:包含不同研究标识的变量。
干预小组
- 病例总数:包含不同研究干预组病例总数的变量
- 阳性结果数:一个变量,包含不同研究干预组中阳性结果的病例数
对照组
- 病例总数:包含不同研究对照组中病例总数的变量
- 阳性结果数:一个变量,包含不同研究对照组中阳性结果的病例数
过滤
在荟萃分析中仅包含所选研究子组的过滤器。
过滤器:一种过滤器,仅在图中包括个案的选定子组。
选件
- 林地:创建林地。
- 相对于研究重量的标记大小:可以选择代表研究效果的标记大小,其大小根据分配给不同研究的权重而变化。您可以选择固定效果模型权重或随机效果模型权重。
- 绘制合并效应-固定效应模型:该选项可将合并效应纳入林区固定效应模型下。
- 地块合并效应-随机效应模型:该选项可将林木图中随机效应模型下的合并效应包括在内。
- 用于合并效果的菱形:使用菱形代表组合效果的选项(菱形的位置代表估计的效果尺寸,菱形的宽度反映估算的精度)。
- 漏斗图:创建漏斗图以检查是否存在发布偏差。请参阅荟萃分析:简介。
结果
该程序列出了各个研究的结果:阳性病例数,病例总数和95%CI的比值比。
固定效应模型和随机效应模型均给出了具有95%CI的合并赔率比。如果值1不在95%CI之内,则赔率在5%的水平上具有统计学意义(P <0.05)。
随机效应模型将倾向于给出更保守的估计(即具有更宽的置信区间),但是在没有异质性的情况下,两个模型的结果通常是一致的。请参阅荟萃分析:介绍异质性统计Cohran Q和I 2。当存在异质性时,随机效应模型应该是首选模型。
请参阅荟萃分析:简介以了解不同的出版偏见测试。
请注意,当一项研究在干预组和对照组中均未报告任何事件(或所有事件)时,该研究将不提供有关事件相对概率的信息,并且会自动从荟萃分析中忽略(Higgins&Green,2011)。
森林图
森林图中显示了95%CI的不同研究的结果以及95%CI的总体效果:
请注意,CI为95%的赔率是按对数比例绘制的。